### 4.1 EXAM QUESTIONS MS

1. (a) Increased surface area (1) more collisions (1)
(b) (i) Experiment $2=9.6 \times 10^{-4}$ (1)

Experiment $3=0.010$ (1)
Experiment $4=8.1 \times 10^{-4}$ (1)
Experiment $5=0.035$ (1)
(ii) $k=\frac{1.2 \times 10^{-4}}{(0 \cdot 020)(0 \cdot 020)^{2}} \quad$ (1) $=15 \quad$ (1) $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$ (1)
2. (a) order wrt $\mathrm{A}=1$;
order wrt $\mathrm{NaOH}=1$;
Initial rate in $\operatorname{Exp} 4=2.4 \times 10^{-3}$;
(b) (i) $\mathrm{r}($ ate $)=\mathrm{k}[\mathrm{A}]$

OR

$$
\begin{aligned}
\mathrm{r}(\mathrm{ate})= & \mathrm{k}[\mathrm{~A}][\mathrm{NaOH}]^{0} \text {; } \\
& \text { (penalise missing [ ] but mark on) } \\
& \text { (penalise missing [ ] once per paper) } \\
& \text { (if wrong order, allow only units mark conseq on } \\
& \text { their rate eqs) } \\
& \text { (penalise } k_{\mathrm{a}} \text { or } k_{\mathrm{w}} \text { etc) }
\end{aligned}
$$

(ii) $\mathrm{k}=\frac{9.0 \times 10^{-3}}{0.02}$;
$=0.45$;
$\mathrm{s}^{-1}$;
$\begin{array}{ll}\text { (iii) (large) excess of } \mathrm{OH}^{-} \text {or }\left[\mathrm{OH}^{-}\right] \text {is large/high; } & 1 \\ {\left[\mathrm{OH}^{-}\right] \text {is (effectively) constant }} \\ \mathrm{OR}\end{array}$
[A] is the limiting factor
(Q of L mark)
3. (a) Power (or index or shown as $x$ in []$^{x}$ ) of concentration term (in rate equation) (1)
(b) $2(\mathbf{1})$
(c) (i) Order with respect to A: 2 (1)

Order with respect to B: 0 (1)
(ii) Rate equation: $($ rate $=) \mathrm{k}[\mathrm{A}]^{2} \mathbf{( 1 )}$

Allow conseq on c(i)
Units for rate constant: $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}(\mathbf{1})$
conseq on rate equation
[6]
4.
(a) Order with respect to $\mathbf{A}$

1 (1) Order with respect to $\mathbf{C}$

1 (1)
2 (1)
(b) Value of k $\quad \mathrm{K}=\frac{8.0 \times 10^{-5}}{(0.1)(0.2)(0.2)^{2}}=0.1$

> (1)
(1)

Units of $k$
$\mathrm{mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}(\mathbf{1})$
Initial rate $\quad 1.0 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
(1)

4
(c) increases (1)
5. (a)

| Substances added to an excess of zinc <br> and $100 \mathrm{~cm}^{3}$ of 0.2 M hydrochloric acid | Volume of <br> hydrogen $/ \mathrm{cm}^{3}$ | Effect on initial rate of <br> reaction |
| :--- | :--- | :--- |
| $100 \mathrm{~cm}^{3}$ water | $\mathbf{2 4 0}(\mathbf{1})$ | decreased (1) |
| 10 g zinc | $\mathbf{2 4 0}(\mathbf{1})$ | no change (1) |
| $50 \mathrm{~cm}^{3} 0.2 \mathrm{M}$ hydrochloric acid | $\mathbf{3 6 0 ( 1 )}$ | no change (1) |

(b) Order with respect to $A$

1 (1)
Order with respect to $B$
1 (1)
Initial rate
$2.8 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1})$
either via $k=1.56 \times 10^{-3}(1)$
or via table eg expts $2 \rightarrow 4$ : rate $\times \frac{1}{2} \times \frac{3}{4}=\times \frac{3}{8}$ (1)
$\begin{array}{ll}\text { (c) (i) Calculation } & \mathrm{k}=\frac{7.5 \times 10^{-3}}{(0.25)^{2}(0.50)^{2}}(\mathbf{1})=0.48 \text { (1) } \\ \text { Units } & \frac{\mathrm{moldm}^{-3} \mathrm{~s}^{-1}}{\left(\mathrm{moldm}^{-3}\right)^{2}\left(\mathrm{moldm}^{-3}\right)^{2}}=\mathrm{mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-}\end{array}$
${ }^{1}$ (1)
$\left.\begin{gathered}\text { Rate } \\ \text { constant, } \\ k\end{gathered} \right\rvert\,$
6. (a) $\exp 4.0 \times 10^{-3} 1$
exp3 $0.45 \times 10^{-5} \quad 1$
$\begin{array}{ll}\exp 4 & 9.0 \times 10^{-3} \\ 1\end{array}$
(b) $\frac{1.8 \times 10^{-5}}{\left(3.0 \times 10^{-3}\right)^{2}\left(1.0 \times 10^{-3}\right.}$

2000 1
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1} \quad 1$
7. (a) (i) 2 (1)
(ii) 0 (1)
(b) (i) Value of $k: \mathrm{k}=\frac{\text { rate }}{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}=\frac{6.5 \times 10^{-4}}{\left(5.012 \times 10^{-2}\right)^{2}\left(2.0 \times 10^{-2}\right)}=13$

Units of $k$ : $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}(\mathbf{1})$
(ii) rate $=13\left(6.5 \times 10^{-2}\right)^{2}\left(3.4 \times 10^{-2}\right)$

$$
\begin{equation*}
=1.9 \times 10^{-3} \quad\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)(\mathbf{1}) \tag{4}
\end{equation*}
$$

If $k$ wrong, the mark in (ii) may be gained conseq for their $k \times 1.437 \times 10^{-4}$
8. (a) (i) Experiment 2: 0.4(0) $\times 10^{-3}$ (1)

Experiment 3: 0.15 (1)
Experiment 4: 0.28 (1)
(ii) $\mathrm{k}=\frac{4.8 \times 10^{-3}}{(0.20)^{2} \times(0.30)}=0.4(0) \mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(1)
(1)
(1)
(b) (change in) temperature (1)
9. (a) (i) (Experiment $1 \rightarrow 2$ ) [A] doubled, ([B] constant,)
rate doubled (1)
stated or shown numerically
(ii) 2 (1)
or shown as ... $[\mathrm{B}]^{2}$
(b) (i) $\mathrm{k}=\frac{9.30 \times 10^{-5}}{(0.75)^{2} \times(1.50)}=1.1(0) \times 10^{-4}$
(1)
(1)
units of k : $\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}(\mathbf{1})$
(ii) rate $=\left(1.10 \times 10^{-4}\right) \times(0.20)^{2} \times(0.10)$

$$
=4.4(1) \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)
$$

(1) for the answer

Ignore units
Conseq on (i)
Upside down expression for $k$ scores zero in (i) for 9073
but rate $=9073 \times(0.2)^{2} \times(0.1)=36(.3)$
conseq scores (1) in (ii)
10. (a) (i)

| Expt | Initial <br> $[\mathbf{A}] / \mathrm{mol} \mathrm{dm}^{-3}$ | Initial <br> $[\mathbf{B}] / \mathrm{mol} \mathrm{dm}^{-3}$ | Initial <br> rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.30 | 0.30 | $1.5 \times 10^{-2}$ |
| 2 | $\mathbf{0 . 6 0} \mathbf{( \mathbf { 1 } ) ( \mathbf { 0 . 5 8 } \text { to 0.63) }}$ | 0.60 | $6.0 \times 10^{-2}$ |
| 3 | 0.45 | $\mathbf{1 . 2 0 ( 1 ) ( \mathbf { 1 . 1 7 } \text { to 1.25) }}$ | $9.0 \times 10^{-2}$ |
| 4 | 0.90 | 0.60 | $\mathbf{9 . 0} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{( \mathbf { 1 } )}$ <br> $\left.\mathbf{8 . 6 ~ t o ~ 9 . 2 ~} \times \mathbf{1 0}^{-2}\right)$ |

(ii) $\mathrm{K}=\frac{\text { rate }}{[\mathrm{A}][\mathrm{B}]}=\frac{1.5 \times 10^{-2}}{0.3 \times 0.3}(\mathbf{1})=0.16 \dot{6}$ (1) (or 0.17 or $0.1 \dot{6}$ )
(1)
(1)
units: $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}(\mathbf{1})$
(b) surface area more (than doubled) (1) many more collisions (1)
11. (a) 2 (1)

0 (1)
rate $=\mathrm{k}[J]^{2} \mathbf{( 1 )}$
(b) $\mathrm{k}=\frac{4 \times 10^{-4}}{\left(2 \times 10^{-2}\right)^{2}\left(5 \times 10^{-2}\right)} \quad(\mathbf{1})=20(\mathbf{1})$
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(c) $\quad$ rate $=\mathrm{k}[]^{\mathrm{n}} \quad \therefore[]^{\mathrm{n}}=\frac{\text { rate }}{\mathrm{k}}$
units: $\frac{\mathrm{moldm}^{-3} \mathrm{~s}^{-1}}{\mathrm{~s}^{-1}}=\mathrm{mol} \mathrm{dm}^{-3} \quad \therefore \mathrm{n}=1$ (2)
greater/increase (1)

